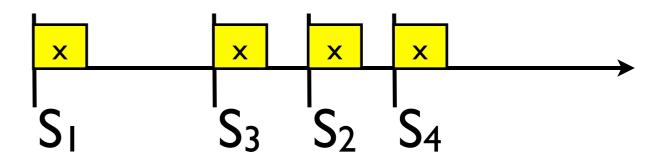
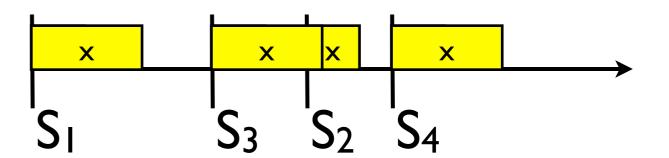
Triangle Scheduling

```
Christoph Dürr, Zdeněk
Hanzálek, Christian Konrad,
Yasmina Seddik, René
Sitters,
Óscar Carlos
Vásquez, Gerhard
Woeginger,
March 2nd
2016,
seminar
```

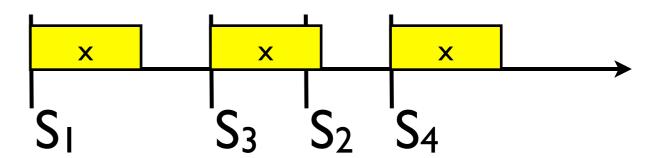
- Single machine
- n jobs, with priorities p_j
- equal processing time x
- decide starting times for jobs prior to knowledge of x
- job j is removed from schedule if x>p_j
- minimize makespan



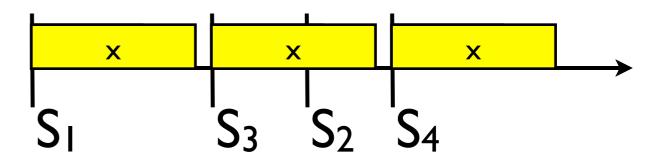
- Single machine
- n jobs, with priorities p_j
- equal processing time x
- decide starting times for jobs prior to knowledge of x
- job j is removed from schedule if x>p_j
- minimize makespan



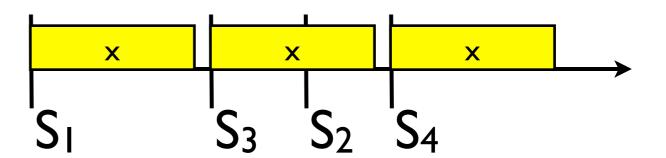
- Single machine
- n jobs, with priorities p_j
- equal processing time x
- decide starting times for jobs prior to knowledge of x
- job j is removed from schedule if x>p_j
- minimize makespan



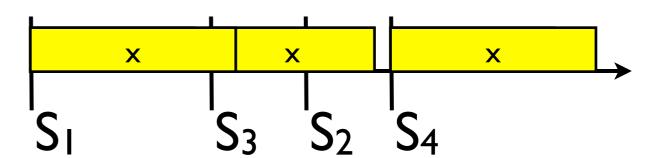
- Single machine
- n jobs, with priorities p_j
- equal processing time x
- decide starting times for jobs prior to knowledge of x
- job j is removed from schedule if x>p_j
- minimize makespan



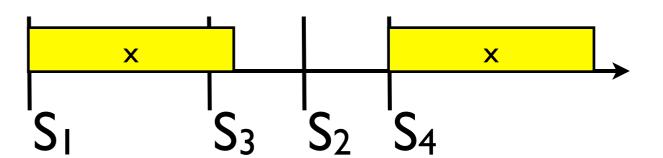
- Single machine
- n jobs, with priorities p_j
- equal processing time x
- decide starting times for jobs prior to knowledge of x
- job j is removed from schedule if x>p_j
- minimize makespan



- Single machine
- n jobs, with priorities p_j
- equal processing time x
- decide starting times for jobs prior to knowledge of x
- job j is removed from schedule if x>p_j
- minimize makespan

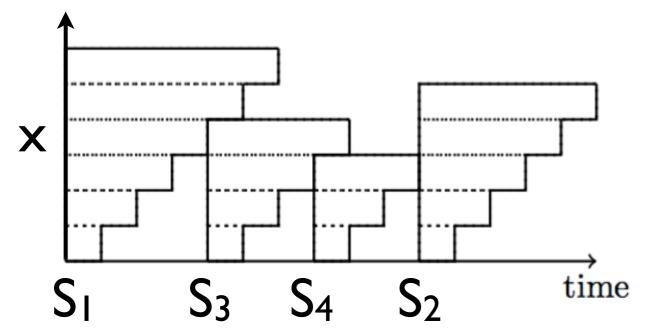


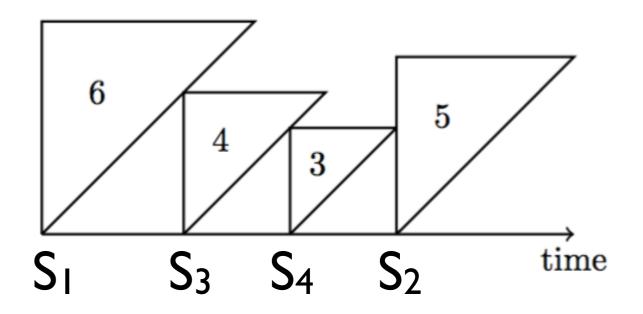
- Single machine
- n jobs, with priorities p_j
- equal processing time x
- decide starting times for jobs prior to knowledge of x
- job j is removed from schedule if x>p_j
- minimize makespan



in fact it is

A geometric problem

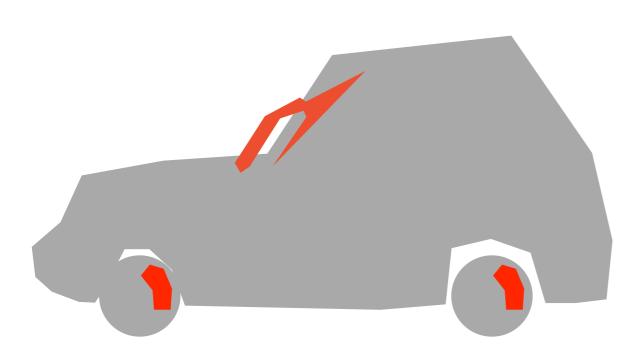




- Single machine
- n triangles, with sizes p_j
- decide starting times $S_j \ge 0$ for job

- such that $|S_i-S_j| \ge \min\{p_i,p_j\}$
- minimize makespan
 max S_j + p_j
- place triangles on the time line without overlapping

motivation Mixed criticality scheduling



Alan Burns and Robert I. Davis,
 Mixed Criticality Systems - A
 Review,
 7th edition, 2016

S. K. Baruah, V. Bonifaci, G. D'Angelo,
 H. Li, A. Marchetti-Spaccamela,
 N. Megow, L. Stougie,
 Mixed-criticality scheduling,

IEEE Transactions on Computers, Vol. 61, pp. 1140-1152, 2012

Results

complexity? unary NP-hard

where is the barrier? binary tree ratio polynomial if ≤ 2 NP-hard if ≥ 2

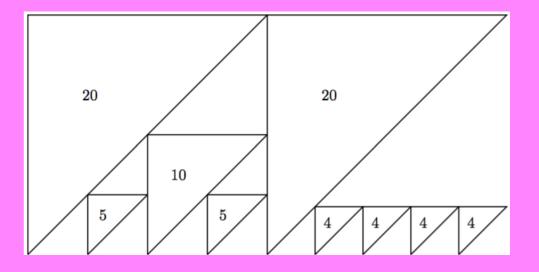
approximation algorithm? Greedy is a 1.5 approximation

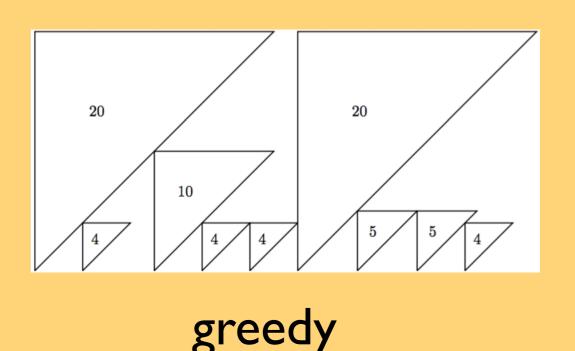
ratio tight ? Greedy's ratio≥ 1.05

APX-hard? No, there is a QPTAS

Greedy

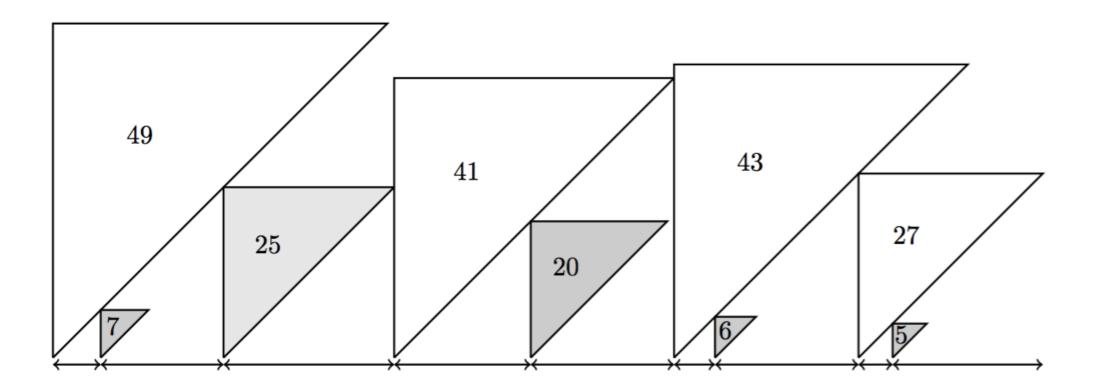
- Process jobs in order p₁≥...≥pn
- Place job j in gap of maximum size
 s, right shift jobs following gap by
 2p_j-s if 2p_j>s





A lower bound for OPT

- assign every gap $[S_i,S_j]$ to smallest among jobs i,j
- For every job j let $a_j \in \{0, 1, 2\}$ be the number of assigned gaps
- Property: $\sum a_j = n$ (number of jobs)
- Property: gap size ≤ assigned job size
- Lower bound : $\Sigma a_j p_j \leq OPT$ for any $a \in \{0, 1, 2\}^n$ with $\Sigma a_j = n$
- Hence (n even): 2 times the smallest half of $\{p_1,...,p_n\} \leq OPT$



Greedy is a 1.5 approximation

12

12

- Wlog suppose no job can be shifted to the right
- Truncate job sizes from p to p', p_j=size of gap starting at S_j

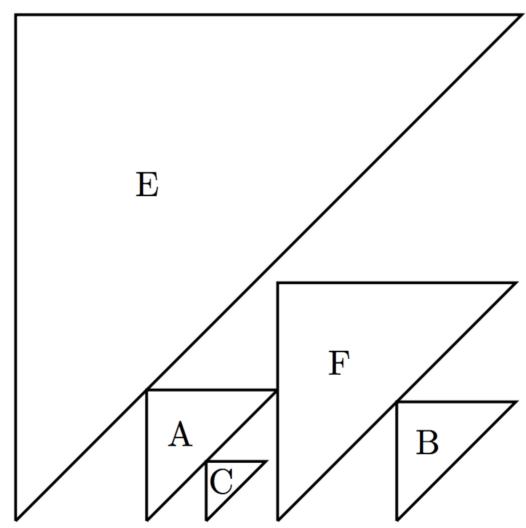
- Makespan produced by Greedy is A + B
- Wlog suppose insertion of job n increased makespan
- Hence all gaps have sizes less than $2p_n$, hence A < 2B
- But $OPT \ge 2B$
- makespan = $A + B \le 3B \le \frac{2}{3}OPT(p') \le \frac{2}{3}OPT(p)$

NP-hardness

reduction from 3-dimensional numerical matching

• given $a_1, ..., a_n, b_1, ..., b_n, c_1, ..., c_n, D$ partition into triplets (a_i,b_j,c_k) with $a_i+b_j+c_k=D$

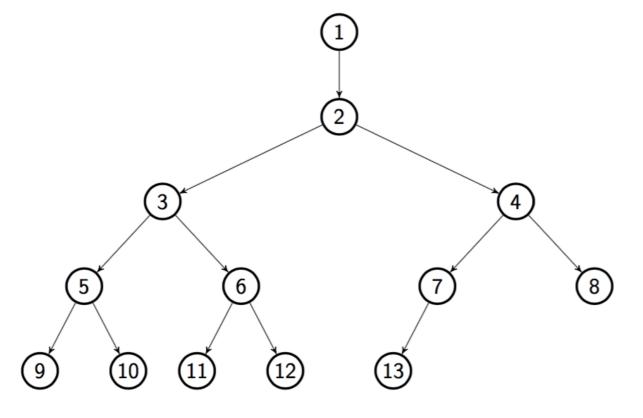
- generate 5n triangles
 M is some arbitrary constant
 - E (size 8M+5D)
 - F (size 4M)
 - A_i (size 2M+2a_i+D)
 - B_i (size $2M+b_i$)
 - C_k (size $M+c_k+D$)



Binary tree ratio

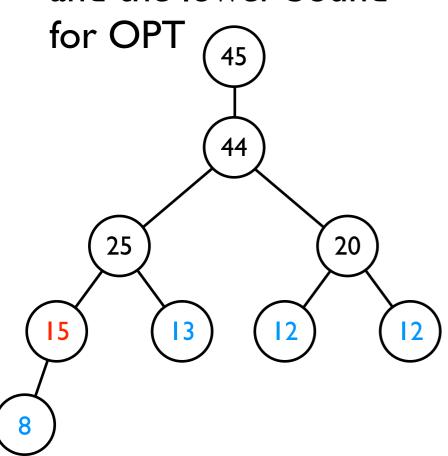
- Suppose order p₁≥...≥p_n
- Formally ratio is max (p_{ceil(i/2)} / p_i)
- NP-hardness proof generates instances with binary tree ratio > 2 (arbitrarily close)
- Greedy is optimal on instances with binary tree ratio ≤ 2.

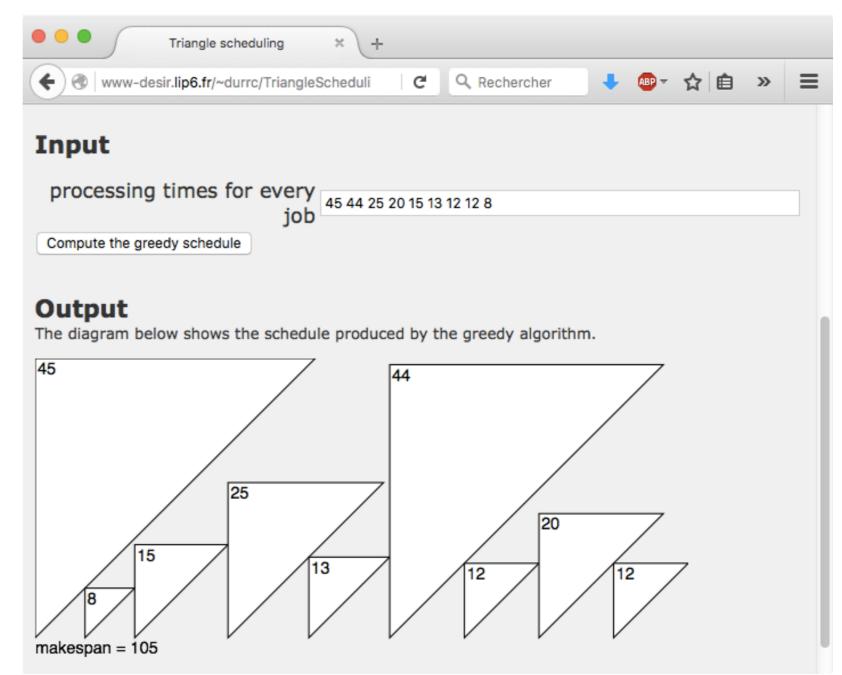
 Informally it is the maximum ratio between vertex and successor if jobs are placed in row order on this tree



Greedy is optimal when binary tree ratio ≤ 2.

• We construct weights $a_j \in \{0, 1, 2\}$ such that $\sum a_j p_j$ is the makespan and the lower bound for OPT





Thank you for y o u rattention, danke schön, Děkuji, Merci, Gracias, dank je