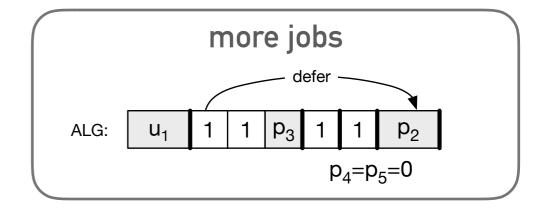

SCHEDULING WITH EXPLORABLE UNCERTAINTY

C. Dürr (Sorbonne University, CNRS) Thomas Erlebach (Leicester) Nicole Megow (Bremen) Julie Meißner (Berlin)

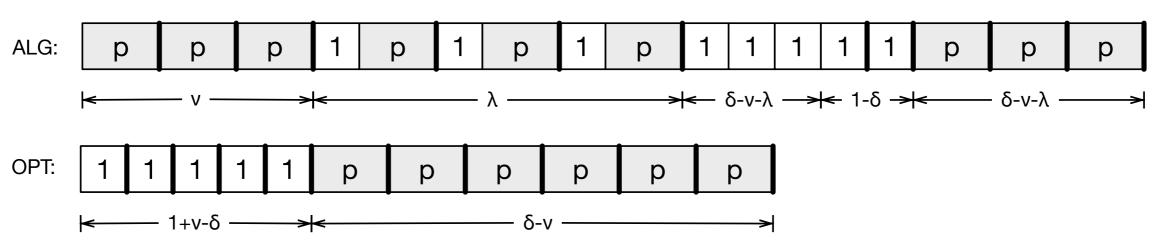
aussois scheduling workshop 2018


INTRODUCTION

test iff $u_i \ge \varphi$

RESULTS

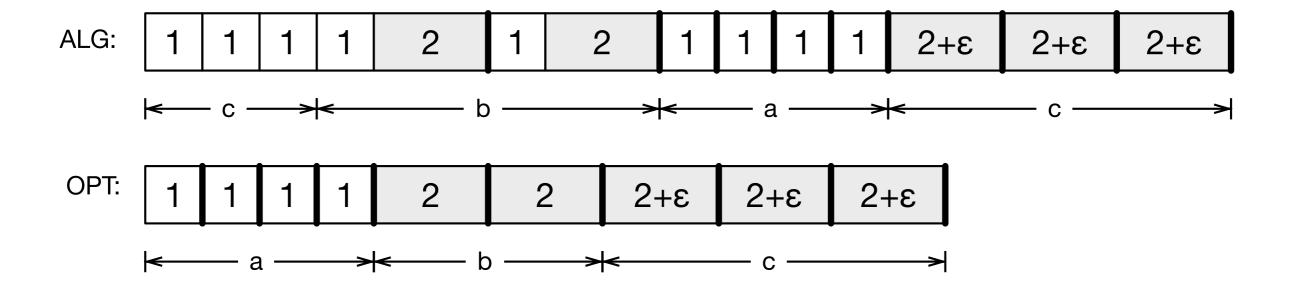
competitive ratio	lower bound	upper bound	algorithm
deterministic ratio	1.8546	2	THRESHOLD
randomized ratio	1.6257	1.7453 (asymptotic ratio)	RANDOM
det. ratio. when ∀j: u _j =p	1.8546	1.9338	BEAT
det. ratio. when ∀j: u _j =p, p _j ∈{0,p}	1.8546	1.8668	UTE



DETERMINISTIC LOWER BOUND

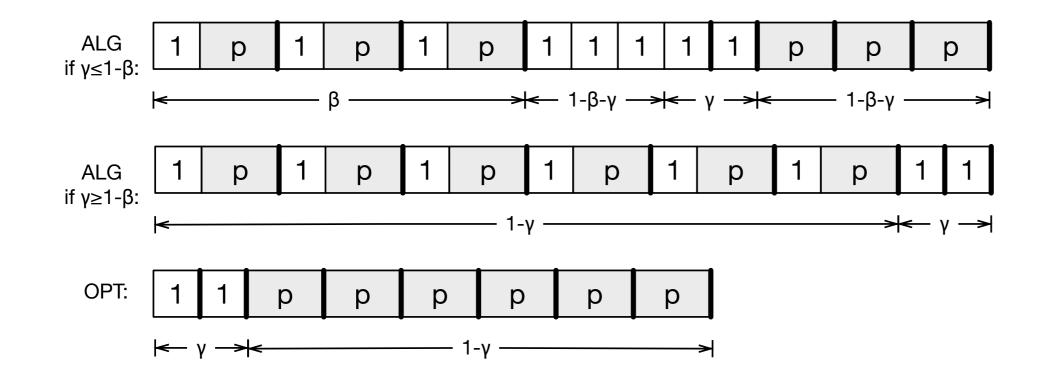
competitive ratio	lower bound	upper bound	algorithm
deterministic ratio	1.8546	2	THRESHOLD
randomized ratio	1.6257	1.7453 (asymptotic ratio)	RANDOM
det. ratio. when ∀j: u _j =p	1.8546	1.9338	BEAT
det. ratio. when ∀j: u _j =p, p _j ∈{0,p}	1.8546	1.8668	UTE

- n uniform jobs with upper limit p
- Index jobs in order they are touched by algorithm (tested or executed untested)
- p_j=0 if j≥δn or job j is executed untested by algo. p_j=p otherwise
- Algorithm gets even to know δ
- Any decent algorithm produces a schedule with above structure for parameters v, λ with v+λ≤δ


- The competitive ratio is ALG(δ,v, λ,n) / OPT(δ,v,n)
- Algorithm
 (minimizer) chooses
 v.λ
- Adversary
 (maximizer) chooses
 n,δ
- Analyzing local optima yields ratio 1.854628

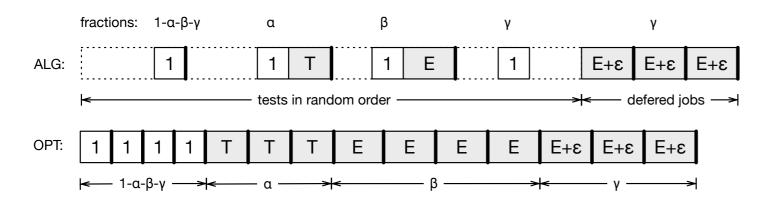
ALGORITHM THRESHOLD

competitive ratio	lower bound	upper bound	algorithm
deterministic ratio	1.8546	2	THRESHOLD
randomized ratio	1.6257	1.7453 (asymptotic ratio)	RANDOM
det. ratio. when ∀j: u _j =p	1.8546	1.9338	BEAT
det. ratio. when ∀j: u _j =p, p _j ∈{0,p}	1.8546	1.8668	UTE


- Execute untested all jobs j with u_j≤2 in order...
- Test all other
 jobs in arbitrary
 order. If p_j≤2,
 execute,
 otherwise defer.
- Execute all deferred jobs in order...
- Worst case instance:
 a jobs u_j=2,p_j=0
 b jobs u_j=p_j=2
 c jobs u_j=p_j=2+ε
- Simple arithmetics: ALG(a,b,c)≤2· OPT(a,b,c)

ALGORITHM UTE

competitive ratio	lower bound	upper bound	algorithm
deterministic ratio	1.8546	2	THRESHOLD
randomized ratio	1.6257	1.7453 (asymptotic ratio)	RANDOM
det. ratio. when ∀j: u _j =p	1.8546	1.9338	BEAT
det. ratio. when ∀j: u _j =p, p _j ∈{0,p}	1.8546	1.8668	UTE


- $\begin{array}{l} \bullet \ \ \text{has ratio} \ \ \rho = \frac{1+\sqrt{3+2\sqrt{5}}}{2} \approx 1.8668. \\ \bullet \ \ \text{Parameter} \ \ \beta = \frac{1-\bar{p}+\bar{p}^2-\rho+2\bar{p}\rho-\bar{p}^2\rho}{1-\bar{p}+\bar{p}^2-\rho+\bar{p}\rho} \end{array}$
- Execute all jobs untested if p≤ρ
- Otherwise test all jobs. Execute right after their test the first max{0,β} fraction of jobs. Then only if p_j=0. Finally execute deferred jobs.
- Worst case instance defined by length p fraction γ: the first γn tested jobs have p_j=p and the remaining p_j=0

• Second order analysis to optimize p, γ and β

ALGORITHM RANDOM

competitive ratio	lower bound	upper bound	algorithm
deterministic ratio	1.8546	2	THRESHOLD
randomized ratio	1.6257	1.7453 (asymptotic ratio)	RANDOM
det. ratio. when ∀j: u _j =p	1.8546	1.9338	BEAT
det. ratio. when ∀j: u _j =p, p _j ∈{0,p}	1.8546	1.8668	UTE

- has parameters T≥E
- Schedule untested all jobs with upper limit < T in increasing upper limit order
 Test in random order all larger jobs j, if p_j≤E execute immediately, else defer their execution
 Finally schedule deferred jobs in increasing processing time order
- Worst case instances: $(1-\alpha-\beta-\gamma)$ fraction of jobs : $u_j=T$, $p_j=0$ an jobs have $u_j=T$, $p_j=T$ βn jobs have $u_j=E$, $p_j=E$ γn jobs have $u_j=E+\epsilon$, $p_j=E+\epsilon$
- Ratio ≤ T iff
 G := OPT·T ALG ≥ 0
- Algorithm chooses T, E to max. G
 Adversary chooses α,β,γ to min. G

Every decision we make, is the wrong one.

-Murphy