Scenario-Based Robust Optimization of Tree Structures

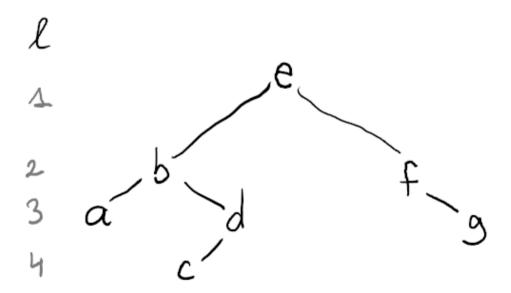
Christoph Dürr, Sorbonne University

joint work with Spyros Angelopoulos, Alex Elenter and Georgii Melidi

Binary search trees

Binary search trees

Input distribution p over an alphabet Output binary search tree with levels ℓ Cost $p \cdot \ell := \sum_i p_i \ell_i$ Optimal tree by dynamic programming in time $O(n^2)$ [Knuth 1971]



Our model

Algorithm chooses a tree (ℓ)

Adversary chooses a distribution p^j out of k given scenarios.

Possible measures cost, ratio, regret

Binary search trees

Input distribution p over an alphabet Output binary search tree with levels ℓ Cost $p \cdot \ell := \sum_i p_i \ell_i$ Optimal tree by dynamic programming in time $O(n^2)$ [Knuth 1971]

e f g

Our model

 $\min_{\ell} \max_{j}$

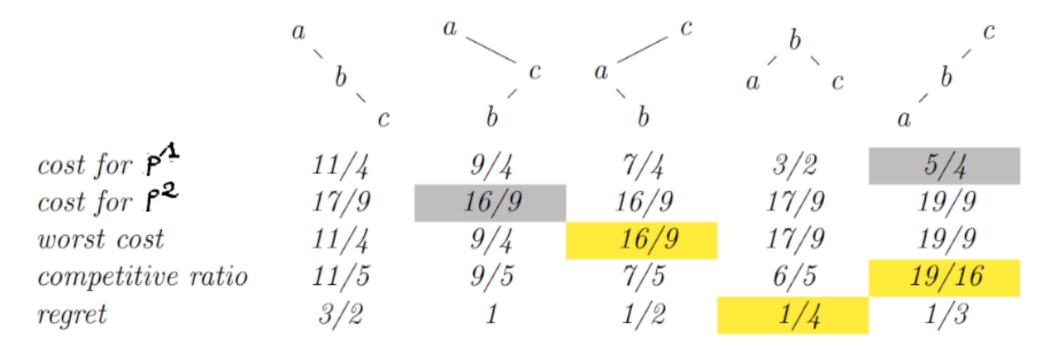
Cost $p^j \cdot \ell$

Ratio $\frac{p^j \cdot \ell}{\min_{\ell^*} p^j \cdot \ell^*}$

Regret

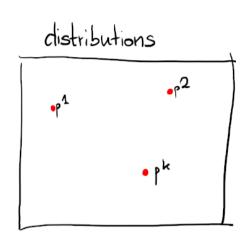
$$p^j \cdot \ell - \min_{\ell^*} p^j \cdot \ell^*$$

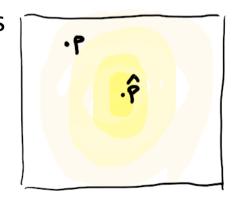
$$p^1 = (0, \frac{1}{4}, \frac{3}{4}), \quad p^2 = (\frac{4}{9}, \frac{2}{9}, \frac{1}{3})$$



- Binary Search with Distributional Predictions

 Dinitz, Im, Lavastida, Moseley, Niaparast, Vassilvitskii, 2024
- Predicted distribution \hat{p}
- Real distribution p with distance η from \hat{p}
- Create binary search tree with cost $O(H(p)+\eta)$ and this is optimal.
- Tree alternates between two strategies





- It is **NP-hard** to optimize the cost, already for k=2 scenarios
- Competitive ratio is $\lceil \log_2(k+1) \rceil$
- Pareto frontier of costs can be computed in polynomial time, for constant k

distributions k kess A Scenebrios

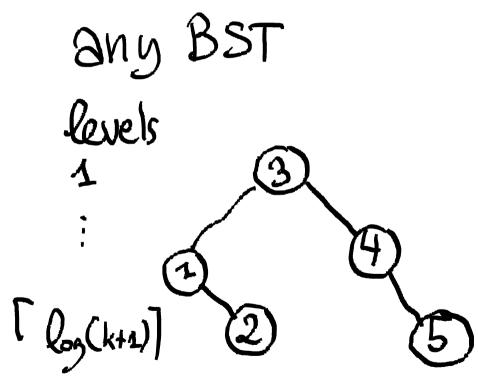
O O O O O

O O O O O

O O O O O

O O O O O

O O O O O



Upper bound on competitive ratio

```
# optimal trees for each scenario
opt ell = [opt bst(p i) for p i in p]
                                                               ken
# recursive construction on key interval
def bst(interval, next level=1):
  # keys with minimum level for each scenario
  for all scenario i:
    S[i] = argmin opt ell[i][x] for x in interval
                                                   Computed ell
    mid = median of S
    ell[mid] = next nevel
                                                                 recursion
    left, right = interval
    bst(left, mid-1, next nevel+1)
    bst(mid+1, right, next level+1)
```

Hard open question

Merging binary search trees

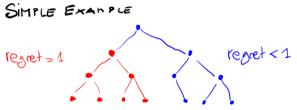
 Suppose we have a keys belonging to scenario 1, and b to scenario 2

•
$$p^1 = (0, 0, \frac{1}{a}, 0, \frac{1}{a})$$

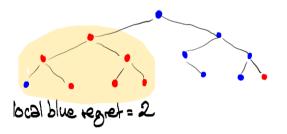
•
$$p^2 = (\frac{1}{b}, \frac{1}{b}, 0, \frac{1}{b}, 0)$$

• **Conjecture** There is a binary search tree with regret 1.

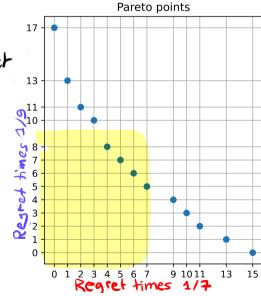
In other words, a tree with levels ℓ such that for each scenario j we have $p^j \cdot \ell \leq 1 + \min_{\ell^*} p^j \cdot \ell^*$.



Example where locally we need to exceed the regret



Full understanding of the Pareto-curve could be necessary for the proof.



Thank you