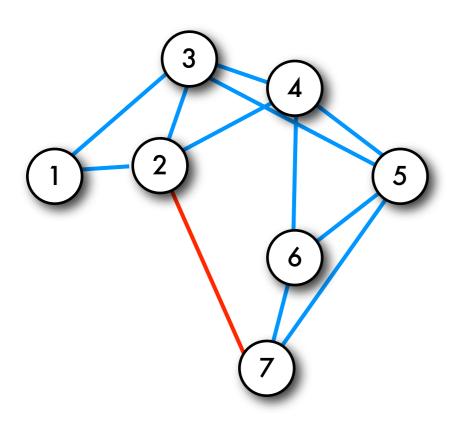
The Interval Ordering Problem

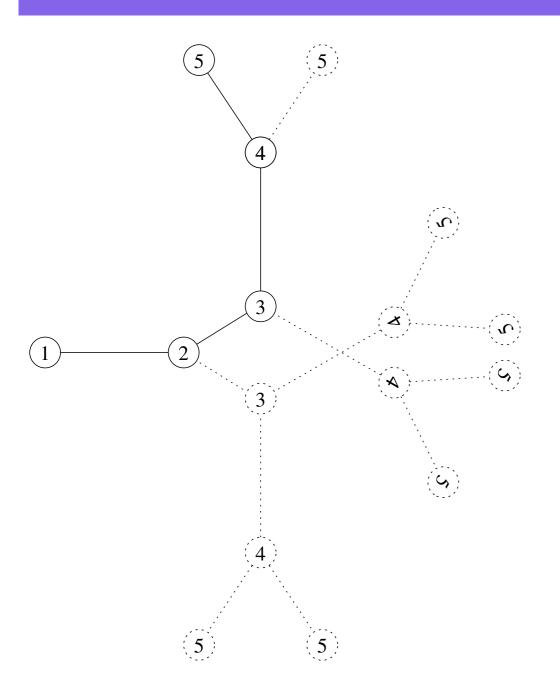
with Maurice Queyranne, Frits Spieksma, Fabrice Talla Nobibon, Gerhard Woeginger

A motivation



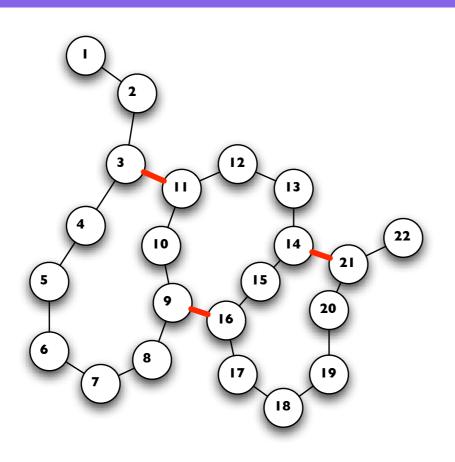
- A molecule consisting of atoms 1,..,n in unknown positions
- we are given the distances between all atom pairs (i,i+1) and (i,i+2)
- and the distances between some other atom pairs

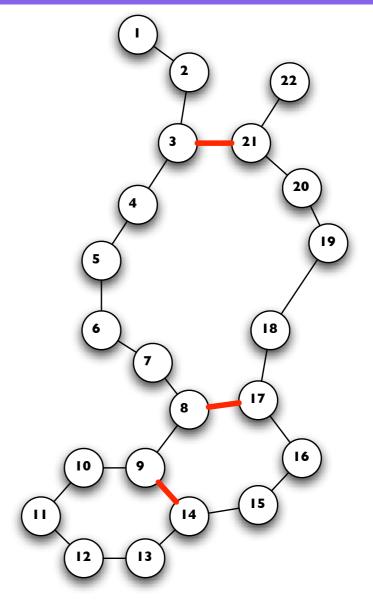
a combinatorial structure

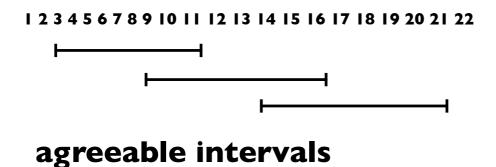


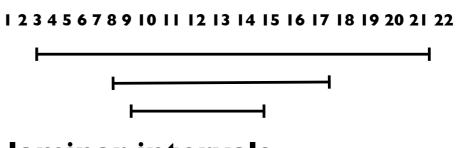
- with the distances (i-1,i) and (i-2,i), there are 2 possible positions for atom i relative to atoms i-1,i-2.
- A binary string describes all valid embeddings
- the other distances are constraints on substrings

special interval families



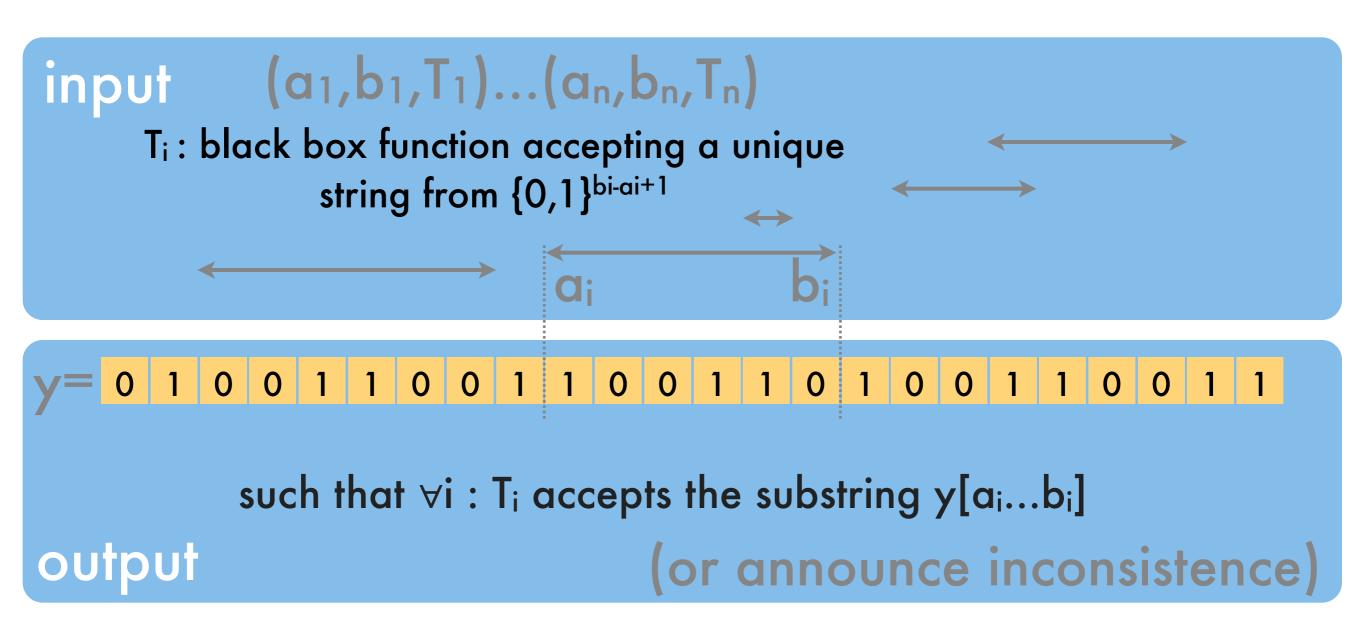




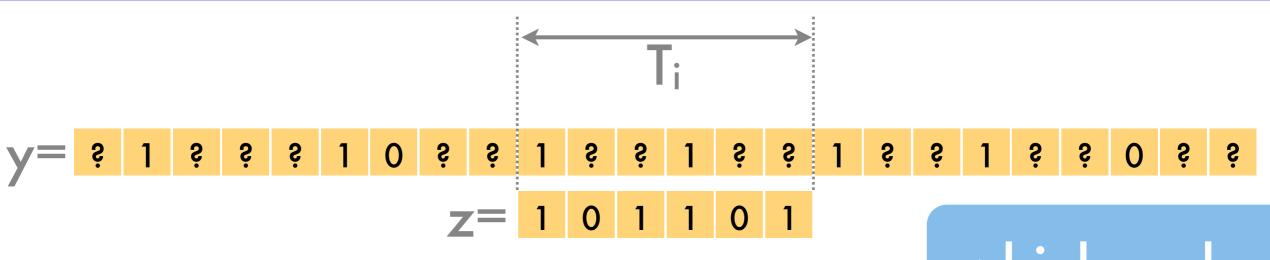


laminar intervals

The Bit String Reconstruction Problem



The Brute Force Search



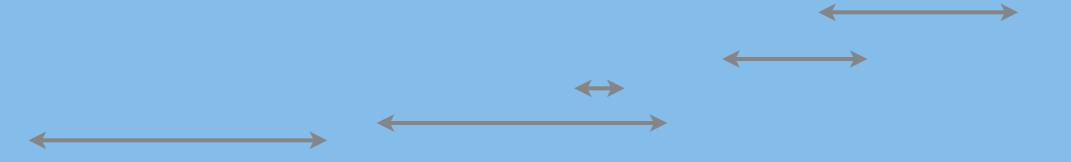
- $y \in \{?,0,1\}^m$, start with $y=?^m$
- for all constraints (a_i,b_i,T_i) in some order
 - $w=y[a_i,b_i]$, k=number of ? in w
 - try all 2^k substitutions of ? by 0 or 1 in w
 - until we find a z accepted by Ti
 - replace in y the portion y[a_i,b_i] by z

which order on those constraints leads to the smallest running time?

The Interval Ordering Problem

fixed a function f

input n intervals $l_1,...,l_n$



output

an order on these intervals

minimizing $\sum_{k} f(I_{k} \setminus (I_{1} \cup ... \cup I_{k-1}))$

f(0)

f(0)

f(4)

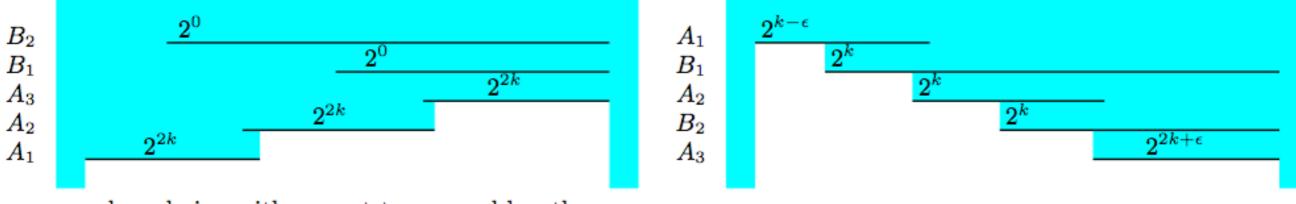
f(4)

greedy ordering with respect to exposed length

How bad is the greedy ordering?

for
$$f(x)=2^x$$
...

Example 2. Consider a family of instances, where each instance consists of 2k-1 intervals: $A_1 = [0, 2k), A_2 = [2k - \epsilon, 4k), A_3 = [4k - \epsilon, 6k), \ldots, A_k = [2k(k-1) - \epsilon, 2k^2), B_1 = [k - \epsilon, 2k^2), B_2 = [3k - \epsilon, 2k^2), B_3 = [5k - \epsilon, 2k^2), \ldots, B_{k-1} = [2k^2 - 3k - \epsilon, 2k^2), \text{ for some constants } k, \epsilon > 0 \text{ with the cost function } f(x) = 2^x.$



greedy ordering with respect to exposed length

optimal ordering

A greedy sequence is $(A_1, A_2, \ldots, A_{k-1}, A_k, B_{k-1}, B_{k-2}, \ldots, B_1)$ and achieves a cost of $k2^{2k} + k - 1$, whereas the optimal solution is $(A_k, B_{k-1}, A_{k-1}, B_{k-2}, \ldots, A_2, B_1, A_1)$ and has the cost of $2^{2k+\epsilon} + (2k-3)2^k + 2^{k-\epsilon}$. The ratio between both costs can be made arbitrarily large, by choosing appropriate k and small $\epsilon > 0$.

... arbitrary bad!

What do we know?

- f arbitrary, (I) agreeable : dynamic programming in O(n³)
- f continuous, convex, (I) agreeable: dynamic pro. in O(n²)
- f(x)-f(0) sub-additive, (I) laminar : inner to outer in O(nlogn)
- variant: minimize $\max_k f(exposed part of I_k)$: greedy in $O(n^2)$
- $f(x)=2^x$, (I) arbitrary: open
- f arbitrary, I arbitrary cannot be constant approximated (unless P=NP)