Preemptive Multi-Machine Scheduling of Equal-Length Jobs to Minimize the Average Flow Time

Philippe Baptiste¹ Christoph Dürr³ Marek Chrobak² Francis Sourd⁴

¹CNRS and LIX, Ecole Polytechnique, Palaiseau

²CS dep. University of California, Riverside

³LRI, University of Paris-11

⁴CNRS and LIP6, University of Paris-6

The Problem $P|r_j$; pmtn; $p_j = p|\sum C_j$

input $n, p, r_1, \ldots, r_n, m$

means n jobs with equal processing time p job j cannot be scheduled before its release time r_j m parallel identical machines

output a preemptive schedule with minimizes average completion time

related problems

- for m = 2 solvable in time $O(n \log n)$ [Herrbach,Leung,1990]
- for arbitrary processing times p_j it is binary NP-hard [Du,Leung,Young,1990]
- ...it is even unary NP-hard [Brucker, Kravchenko, 2004]

- [Brucker, Kravchenko, 2004] showed it can be solved with
 - sort jobs $r_1 \leq \ldots \leq r_n$ in $O(n \log n)$
 - solve a linear program of size $O(n^3)$
 - do some preprocessing in $O(n^3)$
- we show it can be solved directly with a linear program of size O(nm)

related problems

- for m = 2 solvable in time $O(n \log n)$ [Herrbach,Leung,1990]
- for arbitrary processing times p_j it is binary NP-hard [Du,Leung,Young,1990]
- ...it is even unary NP-hard [Brucker, Kravchenko, 2004]

- [Brucker, Kravchenko, 2004] showed it can be solved with
 - sort jobs $r_1 \leq \ldots \leq r_n$ in $O(n \log n)$
 - solve a linear program of size $O(n^3)$
 - do some preprocessing in $O(n^3)$
- we show it can be solved directly with a linear program of size O(nm)

related problems

- for m = 2 solvable in time $O(n \log n)$ [Herrbach,Leung,1990]
- for arbitrary processing times p_j it is binary NP-hard [Du,Leung,Young,1990]
- ...it is even unary NP-hard [Brucker, Kravchenko, 2004]

- [Brucker, Kravchenko, 2004] showed it can be solved with
 - sort jobs $r_1 \leq \ldots \leq r_n$ in $O(n \log n)$
 - solve a linear program of size $O(n^3)$
 - do some preprocessing in $O(n^3)$
- we show it can be solved directly with a linear program of size O(nm)

related problems

- for m = 2 solvable in time $O(n \log n)$ [Herrbach,Leung,1990]
- for arbitrary processing times p_j it is binary NP-hard [Du,Leung,Young,1990]
- ...it is even unary NP-hard [Brucker, Kravchenko, 2004]

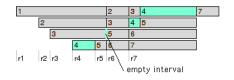
- [Brucker,Kravchenko,2004] showed it can be solved with
 - sort jobs $r_1 \leq \ldots \leq r_n$ in $O(n \log n)$
 - solve a linear program of size O(n³)
 - do some preprocessing in $O(n^3)$
- we show it can be solved directly with a linear program of size O(nm)

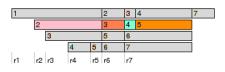
related problems

- for m = 2 solvable in time $O(n \log n)$ [Herrbach,Leung,1990]
- for arbitrary processing times p_j it is binary NP-hard [Du,Leung,Young,1990]
- ...it is even unary NP-hard [Brucker, Kravchenko, 2004]

- [Brucker,Kravchenko,2004] showed it can be solved with
 - sort jobs $r_1 \leq \ldots \leq r_n$ in $O(n \log n)$
 - solve a linear program of size O(n³)
 - do some preprocessing in $O(n^3)$
- we show it can be solved directly with a linear program of size O(nm)

Definition of a *normal* schedule





- every job is scheduled in at most one interval on every machine
- and the intervals are ordered by machines

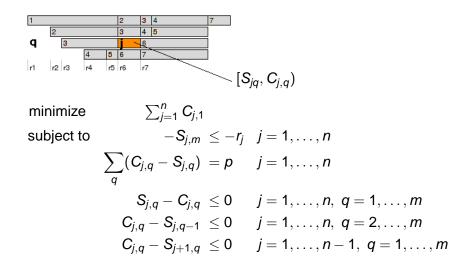
 the executions on a fixed machine are ordered by jobs (suppose r₁ < . . . < r_n)

ordered by machines

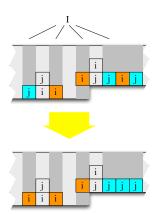
Our main Theorem

Every schedule can be put in normal form without increasing $\sum C_i$

The resulting linear program

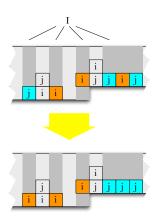


Reduction



- Let I be the time set where exactly one of the jobs i, j ($r_i \le r_j$) is scheduled.
- The reduction of i, j consists of scheduling only i in the first half of I and only j in the second half.
- $C_i + C_j$ does not increase.

Reduction



- Let I be the time set where exactly one of the jobs i, j ($r_i \le r_j$) is scheduled.
- The reduction of i, j consists of scheduling only i in the first half of I and only j in the second half.
- $C_i + C_j$ does not increase.

Simplifying Assumption

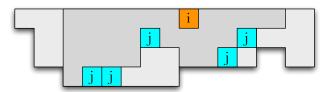
- all start-, preemption- and completion-times are integer.
- in every slot [t, t + 1) 1st job is assigned to 1st machine, 2nd job to 2nd machine...

Proof

Lemma After a finite number of reductions any schedule is in normal form

Proof

- The discrete vector (H(1),...,H(n)) decreases lexicographically with each reduction, where H(i) = sum of integer times t where i is scheduled
- If the number of jobs $\leq j$ scheduled in [t, t+1) for $t \leq r_j$ increases, then a reduction is possible



More related problems

Complexity
O(n log n) [Herrbach,Leung,1990]
this talk
binary NP-complete [Du,Leung,Young,1990]
solvable by the greedy algorithm (trivial)
solvable by the greedy algorithm (trivial)
open
unary NP-complete [Leung, Young, 1990]