Polynomial Time Algorithms for Minimum Energy Scheduling

Ph.Baptiste M.Chrobak C.Dürr CNRS UCR CNRS

Why Minimize Energy?

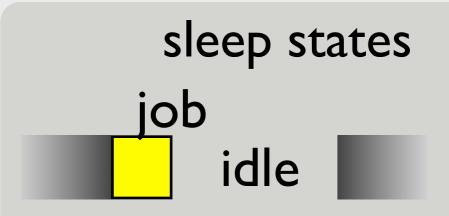
- In 2005 US server farms consumed 1.2% of all electricity
- Please, turn off computers when not needed
- Our objective : schedule jobs such that we need to turn the machine on fewest possible

Two models

speed scaling

job

if speed is s power consumption is $s^{\alpha}+c$ for some $\alpha \in [2,3]$ and some leaking c.

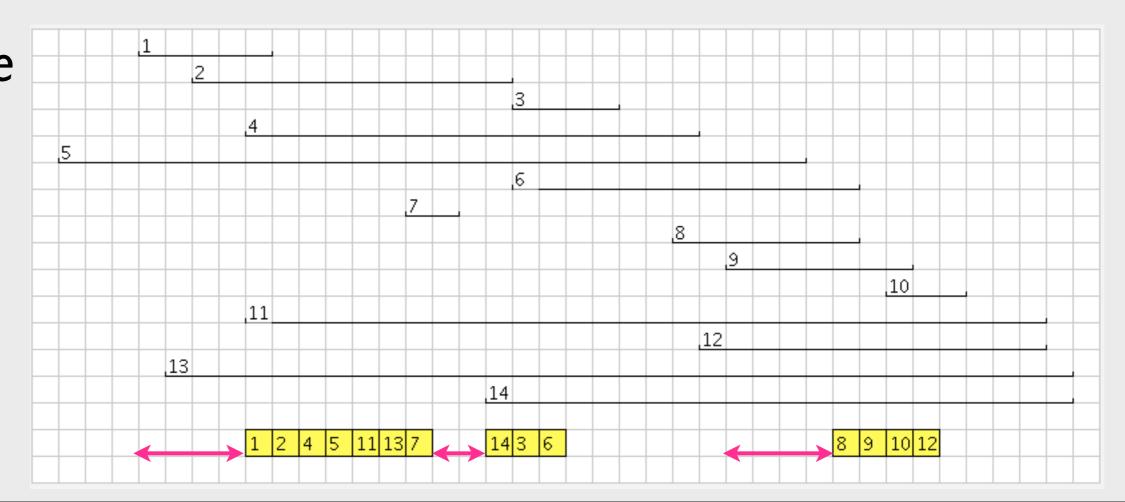


during idle time power consumption is 0, except for the L last units, necessary for wakeup.

Our Problem

- Input: switch-on-time L, n jobs with length pi and release time, deadline [ri,di]
- Output feasible preemptive schedule with min cost
- Cost of each idle interval [s,t] is min{L,t-s}

example
p_i=1
L=4



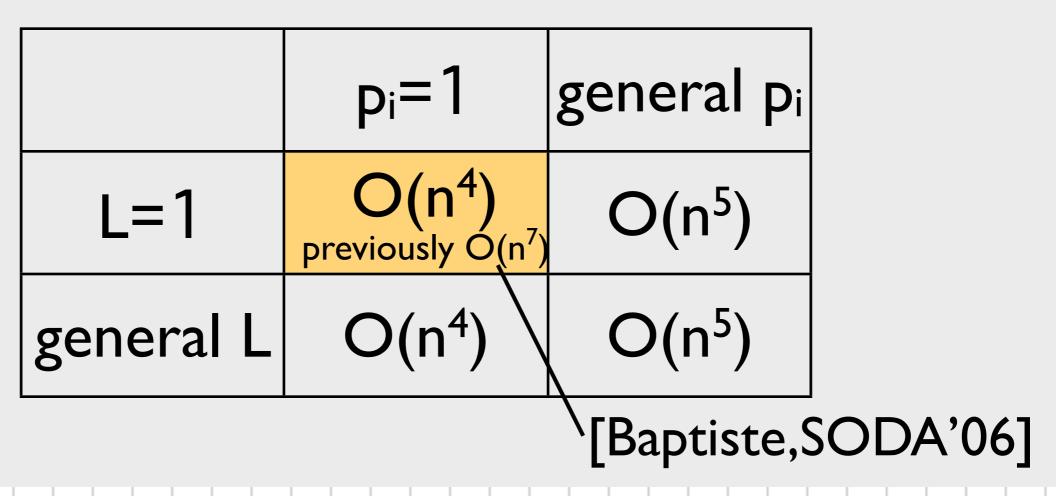
Our algorithms

	p _i =1	general p _i
L=1	O(n ⁴)	O(n ⁵)
general L	O(n ⁴)	O(n ⁵)

- when different speeds are allowed
 open but there is a 2-approx. [Irani,Shukla,Gupta,SODA'03]
- when jobs arrive on-line needs a different model

[Augustine, Irani, Swamy, FOCS'04]

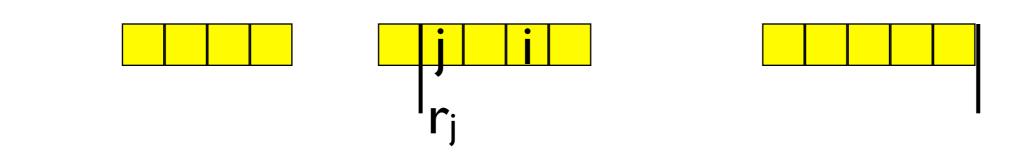
Our algorithms



= Packing unit size jobs in blocks

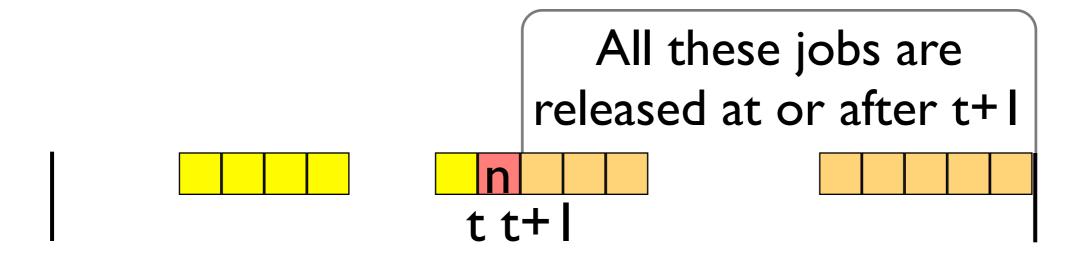
Packing unit size jobs in blocks with least number of gaps

Obs I: execution times



- Without loss of generality every block contains a job starting at its release time
- So all starting times are of the form $T:=\{r_j+a: j=1,...,n,-n<a<n\}$ and there are $O(n^2)$ of them

Obs2: execution order

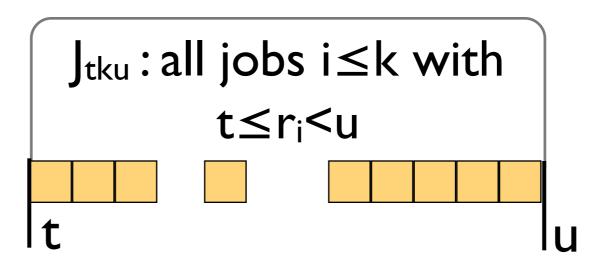


By an exchange argument, we can assume that the jobs are scheduled in the blocks with the Earliest Deadline Policy. (assume $d_1 \le d_2 \le ... \le d_n$)

Basically we guess where the least urgent job n is scheduled, it divides the schedule into independent sub-schedules.

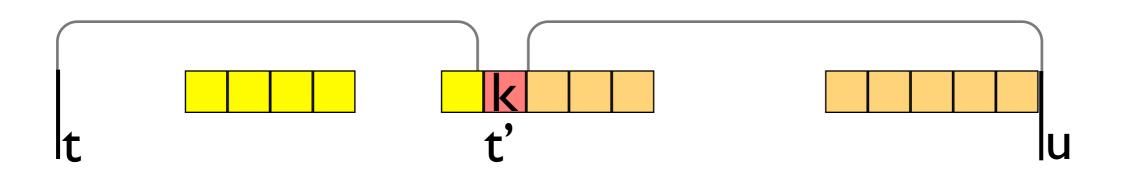
Sub-problem

```
t,u∈T
k∈{I,...,n}
```



Def: G_{tku} = minimum number of gaps over all schedules of J_{tku} (including gaps between t and first block and between last block and u)

Recursion



Basis: if $J_{tku}=\{\}$, $G_{tku}=0$ when t=u o/w $G_{tku}=1$

Basis: if $k \notin J_{tku}$, $G_{tku} = G_{t,k-1,u}$

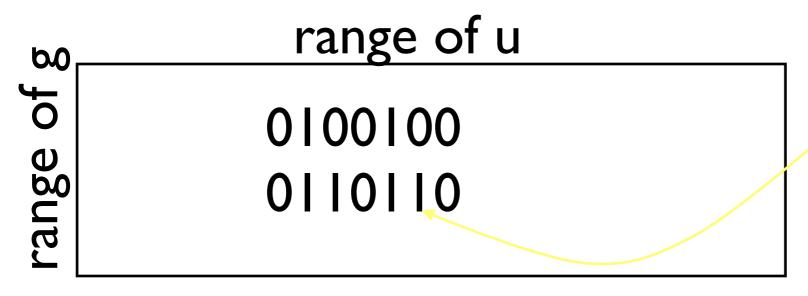
Induction: $G_{tku} = min\{G_{t,k-1,t'} + G_{t'+1,k-1,u} : t \le t' \le u\}$

Complexity $O(n^7)$:

O(n⁵) variables, minimize over O(n²) choices

The inversion trick

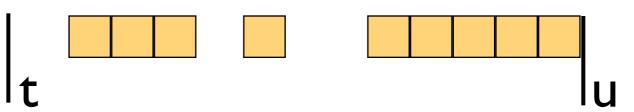
 G_{tku} has O(n) values, while u ranges over $O(n^2)$ values



I means that there is a schedule of J_{tku} with at most g gaps

Invert: U_{tkg} = maximal u such that there is a schedule of J_{tku} of at most g gaps and makespan u

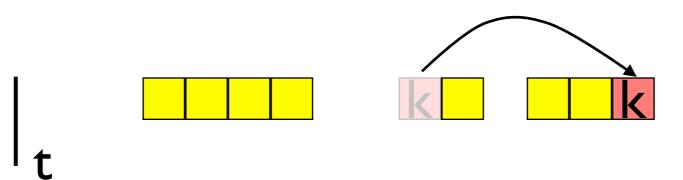
Only O(n4) variables



Obs3: completion times

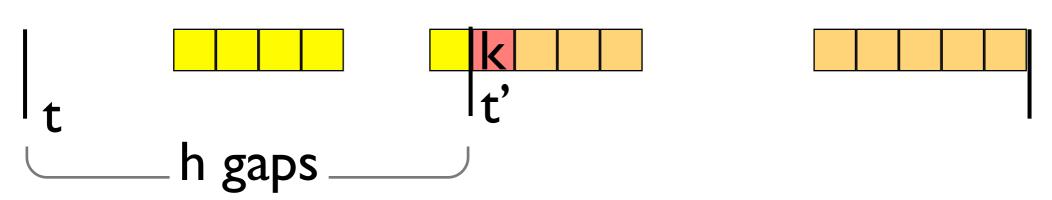
 $\left| \begin{array}{ccc} & & \\ r_i & & \\ \end{array} \right|_{d_i = d_j}$

- If $d_i=d_j$, $r_i \le r_j$, we can assume that i completes before j and set $d_i:=d_i-1$
- Without loss of generality we can assume d1<d2<...<dn

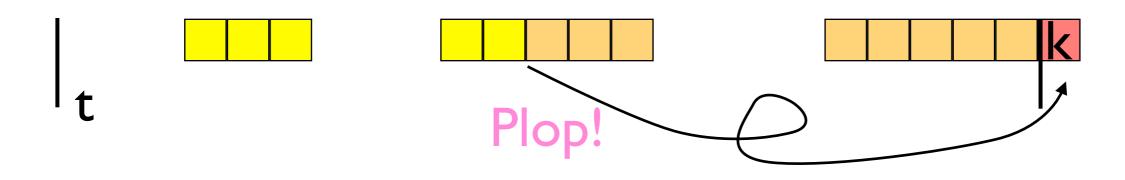


 Therefore if k is in the optimal schedule for Utkg, then either inside a block or at the end

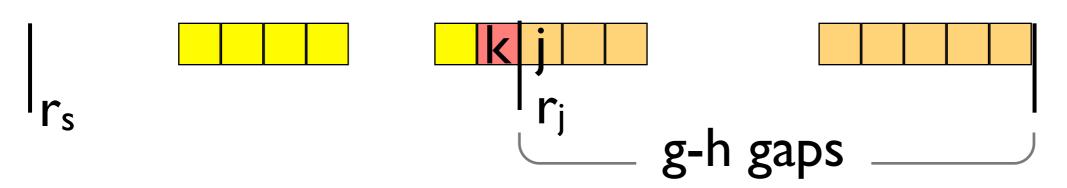
Case job k is scheduled inside a block



• k starts at $U_{t,k-1,h}$ for some $h \le g$ otherwise if $t' < U_{t,k-1,h}$ we could replace...



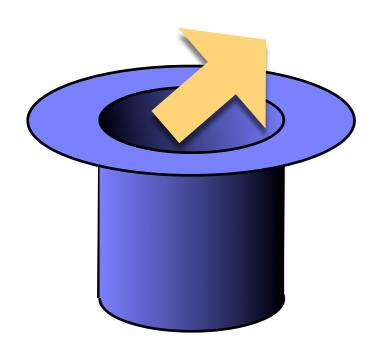
Obs4: t is always some release time



- So compute rather U_{skg} = max u such that there is a $J_{rs,k,u}$ schedule with at most g gaps and makespan u
- Only O(n³) variables

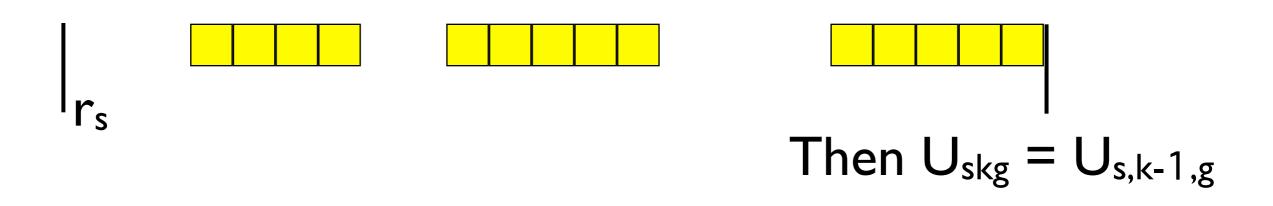
The dynamical program

$$U_{skg} = max \{... some choice\}$$



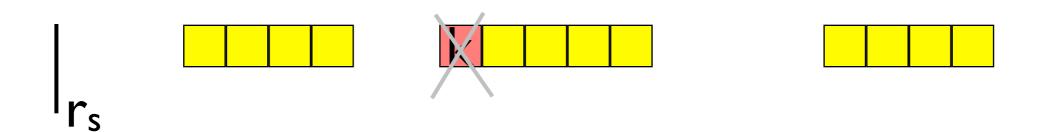
- For a proof of correctness fix some schedule realizing U_{skg} , and go through cases ...
- Where is k scheduled?

Job k might not be scheduled at all



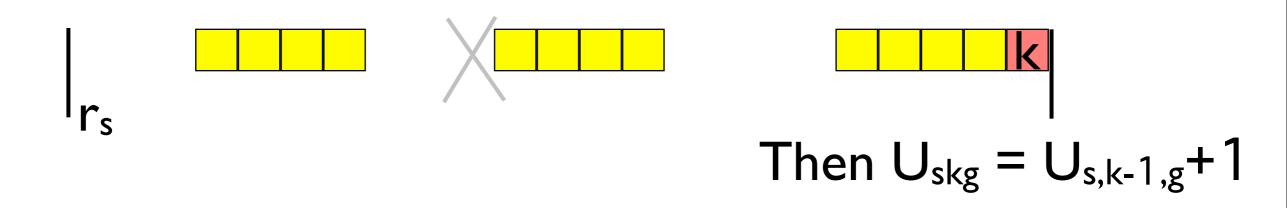
Boring!

Job k might be scheduled at the border of a block



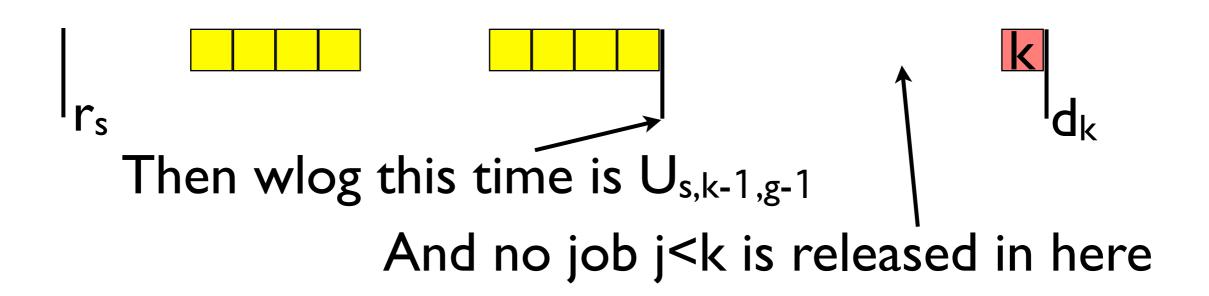
- Then it must be at the end of the last block
- Moving k to the end is valid since d₁<...<d_n

Job k might be scheduled at the border of a block

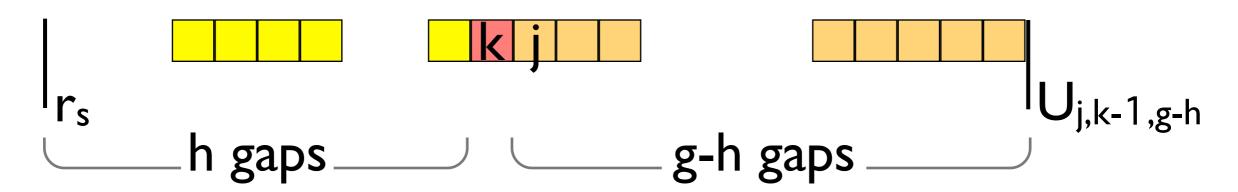


- Then it must be at the end of the last block
- Moving k to the end is valid since d₁<...<d_n

Job k might be scheduled alone in a block



Job k might be scheduled inside a block



- Then k is scheduled at a time $U_{s,k-1,h}$ for some h and there is a job j with $r_j=U_{s,k-1,h}+1$
- In overall U_{skg} is the maximization over O(n) choices
 - Algorithm in time O(n⁴)

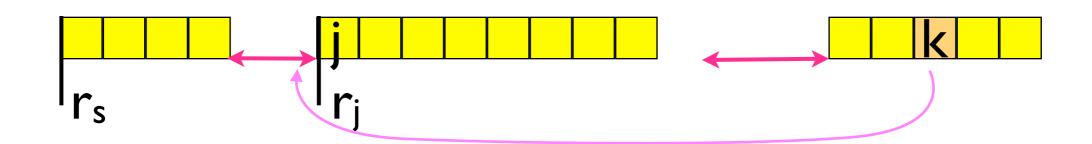
Our algorithms

	p _i =1	general p _i
L=1	O(n ⁴) previously O(n ⁷)	O(n ⁵)
general L	O(n ⁴)	O(n ⁵)

Small / large gaps

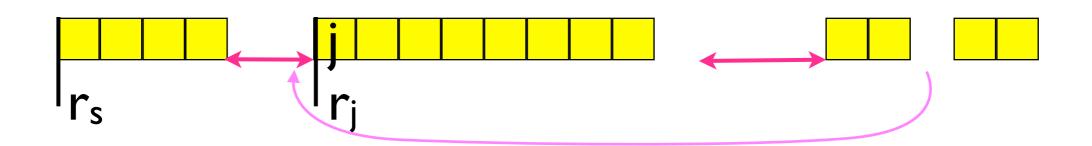
- Small gaps cost their length
- Large gaps cost L

A decomposition



- Wlog jobs scheduled after a small gap, are released after it
- Otherwise we can create a more dominant schedule

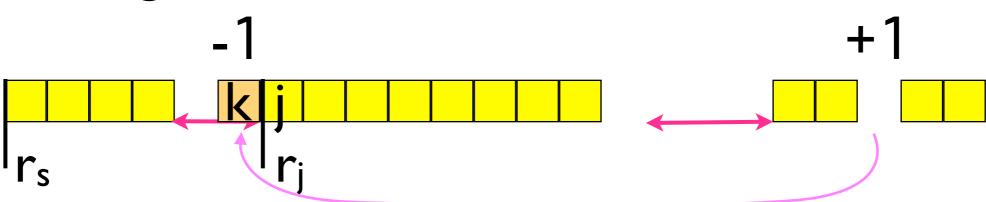
A decomposition



- Wlog jobs scheduled after a small gap, are released after it
- Otherwise we can create a more dominant schedule

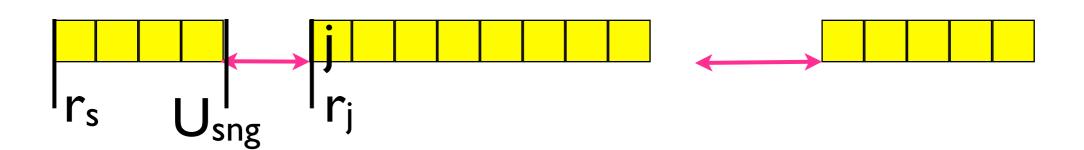
A decomposition

Change in cost:



- Wlog jobs scheduled after a small gap, are released after it
- Otherwise we can create a more dominant schedule

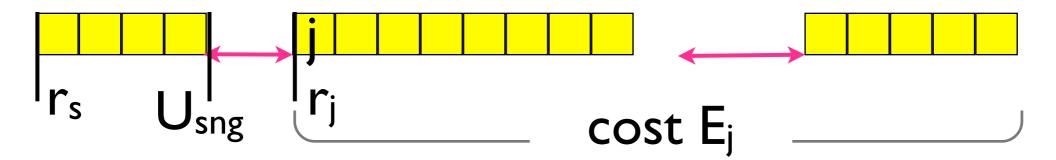
A dynamic program



- Def: E_s =min cost of a schedule with all jobs $j, r_j \ge r_s$
- Guess g, the number of large gaps before the first small gap.

A dynamic program

$$E_s \leftarrow \min_{0 \le g \le n} \left\{ \begin{array}{ll} Lg & \text{if } U_{n,s,g} > \max_j r_j \\ Lg + r_l - u + E_l & \text{otherwise, where } u = U_{n,s,g}, r_l = \min \left\{ r_j : r_j > u \right\} \end{array} \right.$$



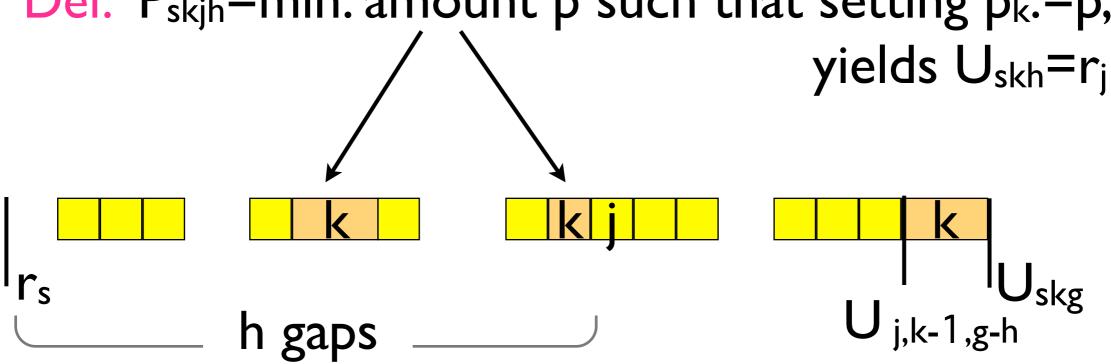
- Def: E_s =min cost of a schedule with all jobs $j, r_j \ge r_s$
- Guess g, the number of large gaps before the first small gap.

Our algorithms

	p _i =1	general p _i
L=1	O(n ⁴) previously O(n ⁷)	O(n ⁵)
general L	O(n ⁴)	O(n ⁵)

General Idea

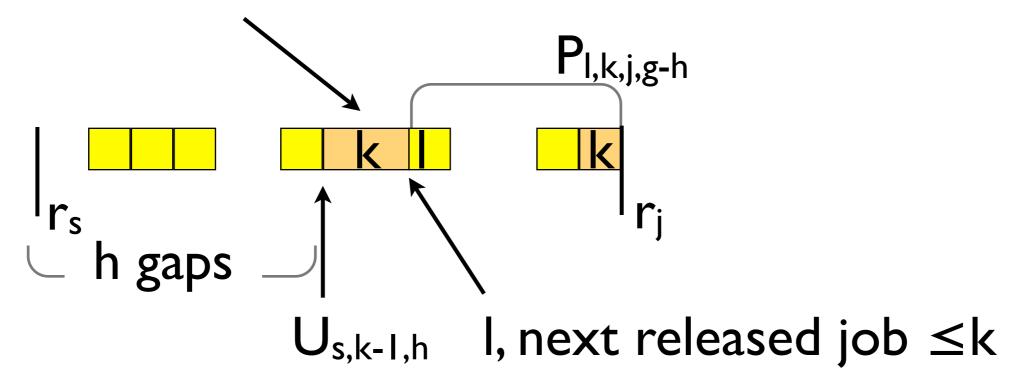
Def: P_{skjh} =min. amount p such that setting p_k :=p,



Then
$$U_{skg} = U_{j,k-1,g-h} + p_k-P_{skjh}$$

Decompostion for Pskjg

first inner execution of k



Open Problems

- Allow identical parallel machines (SOLVED: Demaine et al. SPAA'07)
- Allow several power down states
 [Adriana Lopez generalized our algorithms]
- Allow several processor speeds [in progress]