Nash equilibria in Voronoi games on graphs

Christoph Dürr (CNRS), Nguyễn Kim Thắng (Ecole Polytechnique)

Nash equilibria in Voronoi games on graphs

Christoph Donguyễn Kim Thắng (

this talk contains no random graphs, no approximation algorithms, no sugar

dagstuhl mai 08

lce vendors on a beach

[H.Hotteling, Stability in Competition, 1929]

a beach: a straight segment

tourists: buy from the closest vendor

gain of a vendor: surface of its Voronoi cell

social cost: average distance to the closest vendor

(unique) social optimum

(unique) pure Nash equilibrium

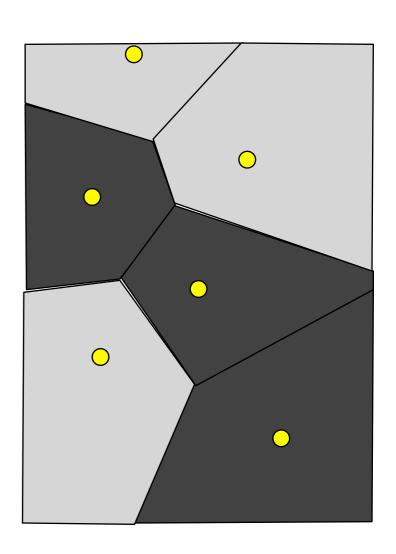
price of anarchy: (here 2) worst ratio between the social cost of an equilibrium and the social optimum

Past work on rectangles

• A rectangle of ratio $r \le 1$, 2 players: White places p vendors, then black places p vendors.

There is a strategy for black to win strictly more than half if and only if $p \ge 3$ et $r > \sqrt{2}/p$ or p = 2 and $r > \sqrt{3}/2$.

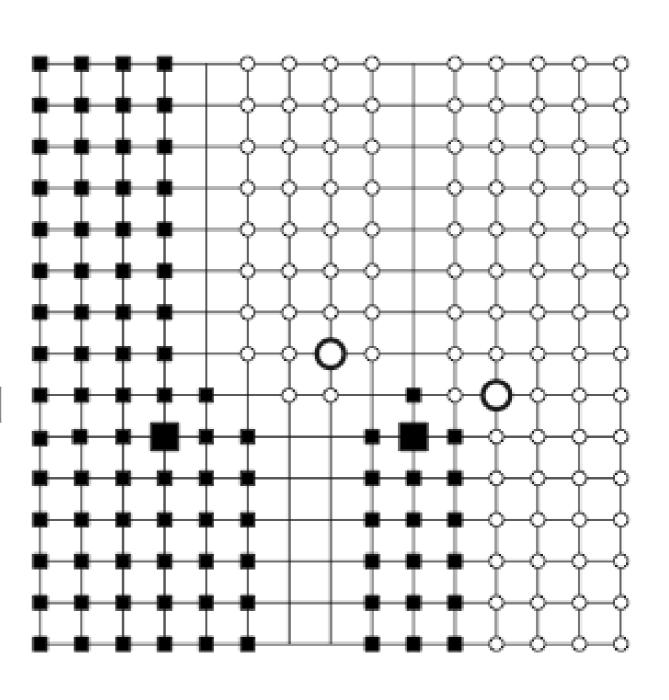
[Cheong, Har-Peled, Linial, Matoušek'02] [Fekete, Meijer'03]



Past work on graphs

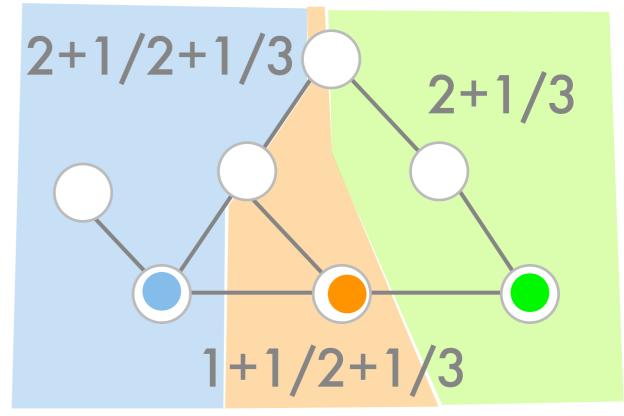
• For the same game on a graph, it is NP-complete to compute the best strategy for black (the 2nd player).

[Teramoto, Demaine, Uehara'06]



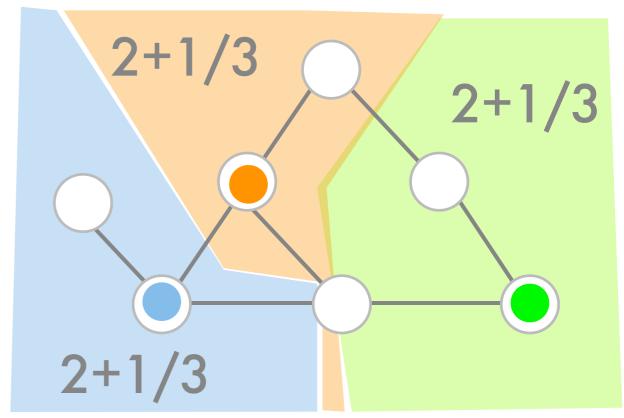
What we studied

- discrete space : V with a distance given by G(V,E)
- k players, each is to place a single vendor on some vertex
- vertices are assigned to closest players, possible in equal fractions
- gain of a player = total amount of vertices assigned to to it
- strategy profile $\in V^k$, is a pure Nash equilibrium if no player can unilaterally increase its gain
- social cost = sum over all vertices of the distance to closest player = minimum k-median problem

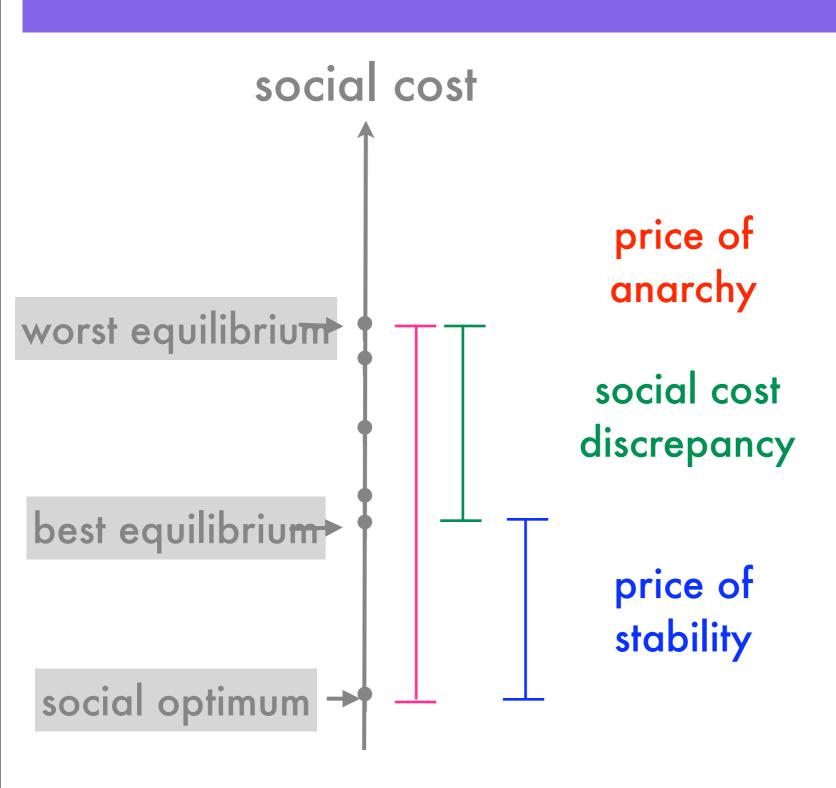


What we studied

- discrete space : V with a distance given by G(V,E)
- k players, each is to place a single vendor on some vertex
- vertices are assigned to closest players, possible in equal fractions
- gain of a player = total amount of vertices assigned to to it
- strategy profile $\in V^k$, is a pure Nash equilibrium if no player can unilaterally increase its gain
- social cost = sum over all vertices of the distance to closest player = minimum k-median problem



Price of anarchy



approximation ratio: price to pay for being restricted to polynomial time running time

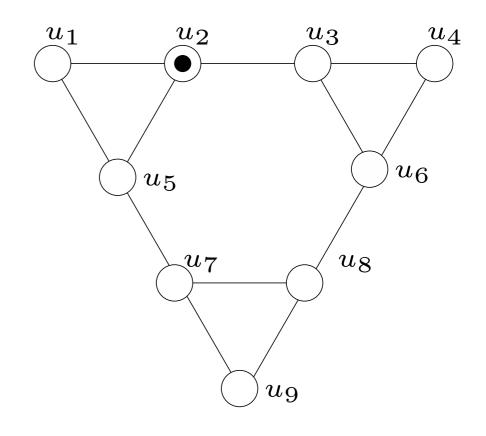
competitive ratio: price to pay for not knowing the future requests in advance

price of anarchy : price to pay for
the lack of coordination

Does an equilibrium exist?

- The existence of an equilibrium is a kind of graph property, it depends on *G*(*V*,*E*) but also on the number of players *k*.
 Our thm: deciding which is the case is NP-hard.
- For example this graph has no equilibrium for 2 players:
 Wlog, the 1st player places on u₁ or u₂.

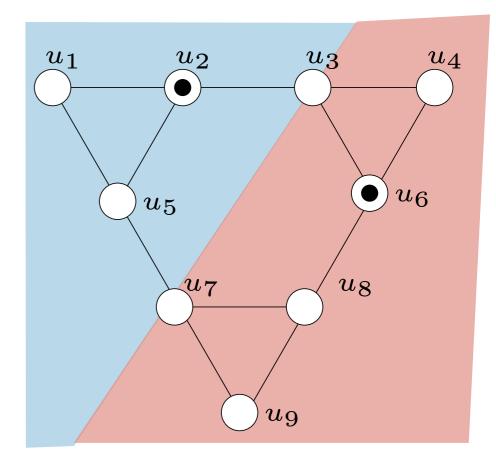
The the 2nd player can place on u6, and gain 5 (or 6), that's more than half. By sym. the 1st player can again change its strategy and gain more than half, and so on forever.



Does an equilibrium exist?

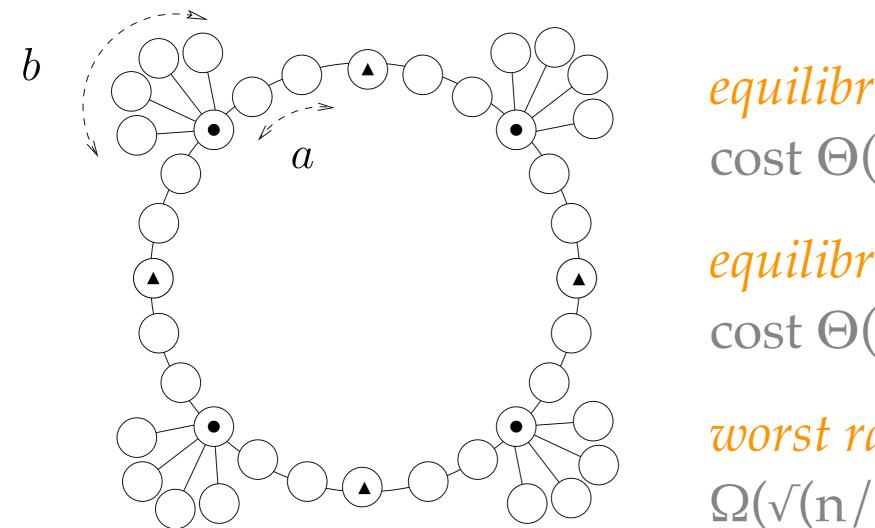
- The existence of an equilibrium is a kind of graph property, it depends on *G*(*V*,*E*) but also on the number of players *k*.
 Our thm: deciding which is the case is NP-hard.
- For example this graph has no equilibrium for 2 players:
 Wlog, the 1st player places on u₁ or u₂.

The the 2nd player can place on u6, and gain 5 (or 6), that's more than half. By sym. the 1st player can again change its strategy and gain more than half, and so on forever.



The social cost can differ by $\sqrt{(n/k)}$

How much do different equilibria differ with respect to social cost?

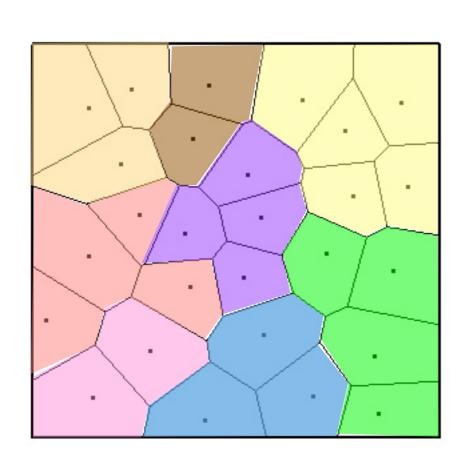


```
equilibrium • : cost Θ(kb+ka<sup>2</sup>)
```

```
equilibrium ▲:
cost Θ(kab+ka²)
```

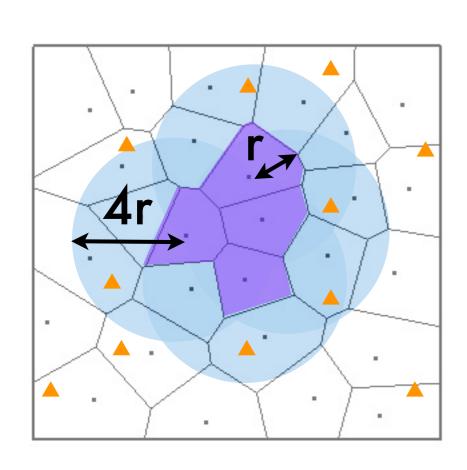
```
worst ratio: \Omega(\sqrt{(n/k)}) when b=a^2.
```

The social cost differs at most by √(kn)



- Let be 2 equilibria
 - and •
- We group the Voronoi cells defined by into regions

The social cost differs at most by √(kn)



- For a fixed region, let r be the maximal distance from a vertex to the closest player
- We show that one of the players must be at distance at most 4r of every of this region

and now?

- Close the gap for the social cost discrepancy between $\sqrt{(n/k)}$ and $\sqrt{(kn)}$
- Find the price of anarchy of this game
- Understand the structure of the game already for simple graphs, trees or cycles.

and now?

- Close the gap for the social cost discrepancy between $\sqrt{(n/k)}$ and $\sqrt{(kn)}$
- Find the price of anarchy of this game
- Understand the structure of the game already for simple graphs, trees or cycles.